# PHARMACEUTICAL CALCULATIONS 

S.B. Jadhav<br>Asst Professor, Dept. of Pharmaceutics,<br>K K Wagh College of Pharmacy

## Weights \& Measures:

> There are two systems of weights and measures:
$\checkmark$ The Imperial System
$\checkmark$ The Metric System

## THE IMPERIAL SYSTEM

- It is an old system of weights and measures.

Measurements of weights in imperial system :

- Weight is a measure of the gravitational force acting on a body and is directly proportional to its mass.
- The imperial systems are of two types:
(a) Avoirdupois system
(b) Apothecarie ssystem


## AVOIRDUPOIS SYSTEM

- In this system pound (lb) is taken as the standard of weight (mass).

1 pound avoir $(\mathrm{lb})=16 \mathrm{oz}$ avoir oz is pronounced as ounce.
1 pound avoir (lb) $=7000$ grains (gr)

## APOTHECARY OR TROY SYSTEM

- In this system grain (gr) is taken as the standard of weight (mass).
- 1 pound apoth $(\mathrm{lb})=12$ ounces
- 1 pound apoth $(\mathrm{lb})=5760$ grains ( gr )
- 1 ounce $=8$ drachms
- 1 drachm $=3$ scruples
- 1 scruple $=20$ grains (gr)


## MEASUREMENTS OF VOLUMES

- 1 gallon (c) $=4$ quart
- 1 quart $=2$ pint (o)
- 1 pint ( 0 ) = 20 fluid ounce
- 1 fluid ounce $=8$ fluid drachm
- 1 fluid drachm $=3$ fluid scruple
- 1 fluid scruple $=20$ minims


## THE METRIC SYSTEM

- 'Kilogram' is taken as the standard weight (mass)

| 1 kilogram (kg) | $=1000$ grams (g) | Kilo $=1000$ | Greek word |
| :---: | :---: | :---: | :---: |
| 1 hectogram (hg) | $=100$ grams (g) | Hecto $=100$ | Greek word |
| 1 dekagram (dg) | $=10$ grams (g) | Deka $=10$ | Greek word |
| 1 gram (g) | 1 gram (g) |  |  |
| 1 decigram $(\mathrm{dcg})$ | $1 / 10$ gram (g) | Deci $=1 / 10$ | Latin word |
| 1 centigram $(\mathrm{cg})$ | $1 / 100$ gram (g) | Centi $=1 / 100$ | Latin word |
| 1 milligram $(\mathrm{mg})$ | $1 / 1000$ gram (g) | Milli $=1 / 1000$ | Latin word |
| 1 microgram <br> $(\mu \mathrm{g})$ | $10^{-6}$ gram (g) | Micro $=10^{-6}$ |  |
| 1 nanogram $(\mathrm{ng})$ | $10^{-9}$ gram (g) | Nano $=10^{-9}$ |  |

## MEASUREMENTS OF VOLUMES

- 'Litre' is taken as the standard of volume.
- 1 liter (L, lit) $=1000 \mathrm{ml}$
- 1 microliter $(\mu \mathrm{l})=1 / 1000 \mathrm{ml}$


## PERCENTAGE SOLUTIONS

- The concentration of a substance can be expressed in the following three types of percentages:
- Weight in volume (w/v): Required to express concentration of a solid in liquid.
- Weight in weight (w/w): Required to express concentration of a solid in solid mixture.
- Volume in volume (v/v): Required to express concentration of a liquid in another liquid.


## PERCENTAGE SOLUTIONS

## Weight in volume (w/v)

Solute: 1 part by weight
Solvent: 100 parts by volume

- In this case the general formula for $1 \%(\mathrm{w} / \mathrm{v})$ is:

Solute: 1 g
Solvent: upto 100 ml

## PERCENTAGE SOLUTIONS

## Weight in volume (w/v)

Exercise: Calculate the quantity of
Sodium chloride required for 500 ml of 0.9\% solution


ANS: $0.9 \%$ w/v solution of $\mathrm{NaCl}=0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{ml}$
So 500 ml solution will contain $0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{ml}$ solution* 500 ml
$=0.9$ * $500 / 100$
$=4.5 \mathrm{~g} \mathrm{NaCl}$

## PERCENTAGE SOLUTIONS

## Weight in weight (w/w)

In this case the general formula for $1 \%(\mathrm{w} / \mathrm{w})$ is:

| Solute | 1part by weight | Solute $\quad 1 \mathrm{~g}$ |
| :--- | :--- | :---: |
| Solvent upto | 100 parts by weight | Solvent up to 100 g |

Volume in volume ( $\mathbf{v} / \mathrm{v}$ )
In this case the general formula for $1 \%(\mathrm{w} / \mathrm{w})$ is:
The formula is actually:

Solute
Solvent upto

1 part by volume
100 parts by volume

Solute 1 ml
Solvent upto 100 ml

## CONVERSION TABLE

| Domestic Measure | Metric System | Imperial system |
| :---: | :---: | :---: |
| 1 drop | 0.06 ml | 1 minim |
| 1 teaspoonful | 5 ml | 1 fluid drachm |
| 1 desert spoonful | 8 ml | 2 fluid drachm |
| 1 tablespoonful | 15 ml | 4 fluid drachms |
| 1 wineglassful | 60 ml | 2 fluid ounces |
| 1 teacupful | 120 ml | 4 fluid ounces |
| 1 tumblerful | 240 ml | 8 fluid ounces |

## WEIGHT MEASURE CONVERSION

- $1 \mathrm{~kg}=2.2$ pounds (lb)
- 1 ounce apoth $=30 \mathrm{~g}$
- 1 pound avoir $=450 \mathrm{~g}$
- 1 grain $=65 \mathrm{mg}$


## CALCULATION BY ALLEGATION METHOD

This types of calculation involves the mixing of two similar preparations, but of different strengths, to produce a preparation of intermediate strength.

- The name is derived from the Latin alligatio, meaning the act of attaching and hence refers to the lines drawn during calculation to bind quantities together.


## CALCULATION BY ALLEGATION METHOD

There are two alligation methods :

1. Alligation Medial :

- Involves calculating the weight average percentage strenght of a mixture of two or more substances of known quantity and conc.
- In other words, this methods calculates the amount of active ingredients in each substance in the compound and then calculates the active ingredients per cent present in whole compound.
- The quantities are expressed in a common denomiation of either weight or volume


## CALCULATION BY ALLEGATION METHOD

There are two alligation methods :
2. Alligation Alternate :

- This rapid method involves determining the proportions in which substances of different strengths are mixed to yield a desired strength or concentration.
- Once the proportion is known, the exact amounts of substances required can be calculated.


## CALCULATION BY ALLEGATION METHOD

There are two alligation methods :
2. Alligation Alternate :

The steps involved:

1. The required percentage or concentration is placed in the centre
2. The percentage of the substance with the lower strength is placed on the lower left hand side
3. The percentage of the substance with the higher strength is placed on the upper left hand side
4. The required percentage is subtracted from the lower percentage, and the obtained difference is placed on the upper right hand side
5. The higher percentage is subtracted from the desired percentage, and the obtained difference is placed on the lower right hand side

## CALCULATION BY ALLEGATION METHOD



- Method:



## CALCULATION BY ALLEGATION METHOD

Problem 1: Calculate the volume of $95 \%$ alcohol required to prepare 600 ml of $70 \%$ alcohol

Given:

- Volume required $=600 \mathrm{ml}$
- Percentage of alcohol required $70 \%$
- Percentage of alcohol to be used $=95 \%$ Ans: 70 parts of $95 \%$ alcohol and


25 parts of water will produce 70\%
Qty of $95 \%$ alcohol required $=600 * 70 / 95=442.10 \mathrm{ml}$
Qty of water required $=600^{*} 25 / 95=157.90 \mathrm{ml}$

## CALCULATION BY ALLEGATION METHOD

Problem 2: Calculate the amount of $70 \%, 60 \%, 40 \%$ and $30 \%$ alcohol that should be mixed to get $50 \%$ alcohol

Solution: When 20 parts of 70\% alcohol, 10 parts of $60 \%$ alcohol,

10 parts of $40 \%$ alcohol
20 parts of $30 \%$ alcohol are mixed together
The resulting solution will produce $50 \%$ alc.

$=(20 \times 70)+(10 \times 60)+(10 \times 40)+(20 \times 30)$
$=1400+600+400+600=3000$

## PROOF SPIRIT

- For excise (tax) purpose, the strength of alcohol in indicated by degrees proof. That is Alcohol strength is calculated in terms of proof spirit
- The US System: Proof spirit is $50 \%$ alcohol by volume (or $42.49 \%$ by weight).
- The British / Indian system: Proof spirit is $57.1 \%$ ethanol by volume (or $48.24 \%$ by weight).
- Definition: Proof spirit is that mixture of alcohol and water, which at $51^{\circ} \mathrm{F}$ weighs $12 / 13^{\text {h }}$ of an equal volume of water.
- [N.B. Density of proof spirit $=12 / 13$ of density of water at $51^{\circ} \mathrm{F}=0.923$ g/ml]
- The strength value above proof strength is expressed as OVER PROOF (O/P)
- The strength value above proof strength is expressed as UNDER PROOF (U/P)


## PR00F SPIRIT

Conversion of strength of alcohol from $\% v / v$ to degrees proof as per Indian system.

$$
\text { Strengh of alcohol }=\frac{\% \mathrm{v} / \mathrm{vstrength}}{57.1 \% \mathrm{v} / \mathrm{v}} \times 100
$$

Conversion of strength of alcohol from degrees proof to $\% v / v$ as per Indian system.

$$
\text { Strenglh ofalcohul in } \% \mathrm{v} / \mathrm{v}=\frac{\text { Strength of alcoholin degreceproof } \times 57.1}{100}
$$

## PROOF SPIRIT

Problem 1: Convert $90 \%$ v/v alcohol into proof spirit
Solution : As 57.1\% alcohol corresponds to 100 volumes of proof spirit, 1 volume of $57.1 \% \mathrm{v} / \mathrm{v}$ alcohol $=100 / 57.1=1.753$ volumes of proof spirit 90 volumes of ethyl alcohol $=90 \times 1.753=157.77$ volumes of proof spirit i.e. 100 L (or ml) of $90 \%$ alcohol are equal to 157.77 L (or ml) of proof spirit
The proof strength of $90 \%^{\wedge}$ alcohol $=157.77-100=57.77$

## ISOTONIC SOLUTION

- Osmosis: If a solution is placed in contact with a semipermeable membrane the movement of the solvent molecules through the membrane is called osmosis.
- An ideal semipermeable membrane only lets the solvent molecules to pass through it but not the solute molecules.
- The biological membranes are not ideal semipermeable membranes.
- They are selectively permeable; they give passage to some solutes while stop the passage of others. In case of biological membranes another term tonicity is used.
- Isotonicity: A solution is isotonic with a living cell if there is no net gain or loss of water by the cell, when it is in contact with this solution


## ISOTONIC SOLUTION

- If a living cell is kept in contact with a solution and there is no loss or gain of water by the cell then the solution is said to be isotonic with the cell.
- It is found that the osmotic pressure of $0.9 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution is same as blood plasma. So $0.9 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution is isotonic with plasma.
- Tonicity:
A. Isotonic: When a solution has same osmotic pressure as that of $0.9 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution.
B. Paratonic: Not isotonic
(a) Hypotonic: The osmotic pressure of the solution is higher than $0.9 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution
(b) Hypertonic: The osmotic pressure of the solution is lower than $0.9 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution


## ISOTONIC SOLUTION

- A red blood corpuscle is placed in a solution and after some time it is viewed under microscope.

| Observation | Conclusion | Mechanism |
| :--- | :--- | :--- |
| The shape and size of the cell <br> remained unchanged | The solution is isotonic | Osmotic pressure of the cell <br> fluid and the solution are <br> same. No movement of water <br> occurs across the cell <br> membrane. |
| The size of the cell <br> increased(swelling) and may <br> burst. | The solution is hypotonic. | Osmotic pressure of the cell <br> fluid is more than the solution. <br> Water molecules moved from <br> the solution to the interior of <br> the cell, so the cell swelled. |
| The size of the cell is |  |  |
| reduced(shrinks) or shrinked. |  |  |$\quad$| The solution is hypertonic. |
| :--- | | Osmotic pressure of the cell |
| :--- |
| fluid is less than the solution |
| outside. Water molecule |
| moved from the interior of the |
| cell to the solution. |

## IIPPORTANCE OF ADJUSTMENT OF TONICITY IN PHARMACEUTICAL DOSAGE FORMS

- Solution for intravenous injection: The injection must be isotonic with plasma, otherwise the red blood corpuscle may be haemolysed.
- Solution for subcutaneous injection: Isotonicity is required but not essential, because the solution is coming in contact with fatty tissue and not in contact with blood.
- Solution for intramuscular injection: The aqueous solution may be slightly hypertonic. This will draw water from the adjoining tissue and increase the absorption of the drug.
- Solution for intracutaneous injection: Diagnostic preparations must be isotonic, because a paratonic solution may cause a false reaction.


## IMPORTANCE OF ADJUSTMENT OF TONICITY IN PHARMACEUTICAL DOSAGE FORMS

- Solutions for intrathecal injection: Intrathecal injections are introduced in the cavities of brain and spinal chord. It mixes with the cerebrospinal fluid (CSF). The volume of CSF is only 60 to 80 ml .
- Solutions for nasal drops: Aqueous solutions applied within the nostril may produce irritation if it is paratonic. So nasal drops must be isotonic with plasma.
- Solutions for ophthalmic use: Only one or two drops of ophthalmic solutions are generally used. So it is not essential for eyedrops to be isotonic. Slight paratonicity will not produce great irritation because the eyedrops will be diluted with the lachrymal fluid


## TONICITY ADJUSTMENT

- Tonicity of isotonic solutions is adjusted by employing osmotic pressure as these solutions are usually iso-osmotic
- Pharmacist does not usually received a prescription for paratonic solution
- Tonicity can be adjusted by introducing an inert material into the solution, provided this material is compatible with the drug
- The methods by which isotonicity can be calculated are:

1. Freezing point method
2. Molecular Weight method

## TONICITY ADJUSTMENT

1. Freezing point method

- In lacrymal fluid, anumber of solutes which freeze at $-0.52^{\circ} \mathrm{C}$ are present, hence all the solutions with freezing point of $\quad-0.52^{\circ} \mathrm{C}$ will be isotonic with lachrymal fluid
- Similarly, human blood plasma also exhibits the same freezing point, thus, the solutions freezing at $0.52^{\circ} \mathrm{C}$ will be isotonic with it


## TONICITY ADJUSTMENT

1. Freezing point method

- Tonicity adjustment can be eased if the freezing point of the drug and the inert salt is known for various strenght of their solutions.
- Tables providing this information are maintained by the pharmacists and the same information can also be obtained from the standard texts.
- Freezing points in this case are expressed in terms of $1 \%$ solutions and the quantity can be determined by multiplying the freezing points with the factor.


## TONICITY ADJUSTMENT

1. Freezing point method

Freezing point of the tear secretion
or
Human blood plasma

Freezing point of the drug +

Freezing point of the adjusting substance

Eq (1)

## TONICITY ADJUSTMENT

## 1. Freezing point method

Example : 200 ml of an eye wash containing $1 \%$ of boric acid is to be dispensed. ( F.P. of $1 \%$ boric acid $=-0.29^{\circ} \mathrm{C}$ and F.P. of $1 \%$ solution of $\mathrm{NaCl}=$ $-0.58^{\circ} \mathrm{C}$ )

On applying the equation 01 :
$-0.52=-0.29+(-X)$
$X=0.52-0.29=0.23$ i.e. NaCl sufficient to produce a freezing point lowering of $0.23^{\circ} \mathrm{C}$ is required
It is given that $1 \% \mathrm{NaCl}$ lowers the freezing point by $0.58^{\circ} \mathrm{C}$, thus, NaCL required to produce lowering of $0.23^{\circ} \mathrm{C}$ will be:
$1 \times 0.23 / 0.58=0.39 \mathrm{~g} / 100 \mathrm{ml}$ or $0.39 \%$
Thus, the working formula for 200 ml of the eyewash will be:

## TONICITY ADJUSTMENT

Contd...
Boric Acid (1\%, for 200 ml$)=1 \times 2=2 \mathrm{gm}$
Sodium Chloride ( $0.39 \%$ for 200 ml ) $=0.39 \times 2=0.78 \mathrm{~g}$
Purified water sufficient to produce 200 ml
However, if pharamcist has been asked to dispense 200 ml of eyewash of boric acid, the calculation will be follows:

Lowering of $0.29^{\circ} \mathrm{C}$ in F.P. is produced by 1 gm of boric acid
Therefore, lowering of $0.52^{\circ} \mathrm{C}$ in F.P. is produced by $1 \mathrm{X} 0.52 / 0.29=1.8 \mathrm{~kg}$
Hence, 1.8 g of boric acid is required for making 100 ml of an eyewash and working formula will be:
Boric Acid $(1.8 \%$ for 200 ml$)=1.8^{*} 2=3.6 \mathrm{~g}$
Purified water sufficient to produce 200 ml

## TONICITY ADJUSTMENT

2. Molecular Weight Method

- A solution's freezing point inversely depends on the concentration of the solutes dissolved in it. Thus, greater solute concentration lowers the freezing point of the solution.
- This indicates that freezing point is a function of the concentration of gram moes of the solute.
- It can also be said that freezing point depends on the no. od ions, the drug weight and its molecular weight.


## TONICITY ADJUSTMENT

## 2. Molecular Weight Method

- For a $0.9 \%$ solution of sodium chloride the concentration can be expressed as :

$\frac{$|  \{No. of grams of NaCL X No. of  |
| :---: |
|  effective ions\}  |}{Molecular Weight of NaCl}$=$| Isotonic factor or |
| :---: |
| Isotonicity |

- In other words : g X $\mathrm{n} / \mathrm{m}=$ IsotonicFactor OR $0.9 \times 2 / 58.5=0.03$ (Isotonic factor for NaCl )


## TONICITY ADJUSTMENT

## 2. Molecular Weight Method

- Isotonicity of $0.9 \% \mathrm{NaCl}$ (normal saline) is similar to those of body fluids. Thus, 0.03 will be the isotonicity or tonicity factor for tear secretion and blood serum.
- The quantities for making eye solution can calculated by equating the 0.03 value with the tonicity factor of the drug and additive(S)
- The equztion for calculating the additive quantity :

$$
0.03=\underline{g \times n}=\underline{g_{1} \times n_{1}}=g_{2} \times n_{2}
$$

## TONICITY ADJUSTMENT

2. Molecular Weight Method

- Where, $\mathrm{g}=$ Weight in gram

$$
\mathrm{n}=\mathrm{Effective} \text { ion concentration }
$$

$\mathrm{m}=$ molecular weight of the medicament


